Avantages mécaniques : Différence entre versions

De Wiklou, le Wiki du Biclou
Aller à : navigation, rechercher
m (liens internes)
(création de la page section Frein, 2ème partie)
 
(Une révision intermédiaire par le même utilisateur non affichée)
Ligne 54 : Ligne 54 :
 
  Avantage mécanique = (longueur de manivelle / rayon effectif la roue) × (nombre de dents du pignon / nombre de dents du plateau)
 
  Avantage mécanique = (longueur de manivelle / rayon effectif la roue) × (nombre de dents du pignon / nombre de dents du plateau)
  
=== Freins ===
+
=== Frein ===
 +
<gallery mode="packed" heights=200px>
 +
File:LeverFirstClass.svg|thumb|Levier inter-appui&nbsp;: [[Frein#Freins à étrier|freins à étrier]]
 +
Fichier:EtrierFrein.jpg|thumb|[[Frein#Freins à étrier|freins à étrier]]
 +
</gallery>
 +
<gallery mode="packed" heights=200px>
 +
File:LeverSecondClass.svg|thumb|Levier inter-résistant&nbsp;: [[Frein#Freins sur tasseaux|frein sur tasseaux]]
 +
Fichier:Cantilever.jpg|thumb|[[Frein#Freins sur tasseaux|Frein sur tasseaux]]&nbsp;: [[Frein#Frein cantilever|Cantilever]]
 +
</gallery>
 +
Le mâchoires des '''freins sur jante à câble''' agissent comme des leviers&nbsp;:
 +
* Sur les [[Frein#Freins à étrier|'''étriers de frein''']], le pivot se situe plus ou moins au milieu de chaque mâchoire. La partie au-dessus du pivot, rattachée au câble, est la partie qui actionne le levier (entre le triangle et la main sur le dessin). Elle est en général de longueur similaire sur tous les modèles de frein de même type. La partie en-dessous du pivot, où est fixé le patin, est la partie qui effectue le freinage (entre le triangle et la flèche sur le dessin). Elle peut être plus ou moins longue sur les [[Frein#Frein à étrier à tirage latéral|freins à tirage latéral à simple pivot]]. Plus cette partie est longue, moins il y a aura d’avantage mécanique, et plus le freinage sera mou. L’avantage mécanique est assez variable, autour de 1 pour les étriers anciens et proche de 2 pour les [[Frein#Frein à double pivot|étriers à double-pivot]].
 +
* Sur les [[Frein#Freins sur tasseaux|'''freins à tasseaux''']], le pivot se situe à l’une des extrémités de chaque mâchoire. Ce sont donc des cantilevers, qu’ils soient à [[Frein#Frein cantilever|tirage central]] ou à [[Frein#Frein à tirage direct|tirage direct]]. La partie agissante occupe toute la mâchoire (entre le triangle et la main sur le dessin) alors que la partie effective se situe entre le tasseau et le patin (entre le triangle et la flèche sur le dessin). Le rapport entre ces deux parties varie peu d’un modèle à l’autre. L’avantage mécanique est proche de 4 sur les freins à tirage direct et autour de 2 sur les autres cantilevers, la principale variable d’ajustement étant la position du [[patin]] sur les mâchoires.
 +
==== Levier de frein à câble ====
 +
<gallery mode="packed" heights=200px>
 +
File:Labeled Brake Lever Mono 2.jpg|thumb|Levier de frein cantilever&nbsp;: D=Partie agissante du levier.
 +
File:Brake lever pivot point linear vbrake.jpg|thumb|Partie effective d'un levier de frein à tirage long.
 +
File:Brake lever pivot point nonlinear cantilever.jpg|thumb|Partie effective d'un levier de frein à tirage court.
 +
File:JugendstilBikes Miyata760SR11.jpg|thumb|Levier de frein route.
 +
</gallery>
 +
<gallery mode="packed" heights=200px>
 +
File:LeverSecondClass.svg|thumb|Levier inter-résistant&nbsp;: [[levier de frein]]
 +
</gallery>
 +
Les [[leviers de frein]] offrent un premier avantage mécanique&nbsp;:
 +
* La partie '''agissante''' (entre le triangle et la main sur le dessin) est la partie visible du levier. Cet élément est difficilement mesurable, car l’action réelle dépendra des positions où sont posés les doigts de la main. Tout ce qu’on peut prédire est qu’un levier deux doigt offrira moins d’avantage mécanique qu’un levier trois ou quatre doigts.
 +
* La partie '''effective''' (entre le triangle et la flèche sur le dessin) est la partie cachée du levier. Elle forme un angle droit avec l’autre élément du levier. Elle se mesure de la tête de câble au pivot d’articulation du frein. Plus cette distance est importante, plus le '''tirage du câble''' sera long et plus l’avantage mécanique offert par le levier sera faible.
 +
 
 +
Traditionnellement on distingue les leviers en deux catégories en fonction de cette donnée&nbsp;:
 +
* Les leviers à '''tirage long''' ont une articulation de 34 mm ou plus. Ils sont requis pour les [[Frein#Frein à tirage direct|freins à tirage direct]] (et les [[Frein#Frein à disque mécanique|freins à disque mécanique]] de VTT). En effet, leur avantage mécanique plus grand (proche de 4), implique en effet une plus grande amplitude au mouvement appliqué au levier de frein. Comme ce mouvement provient du [[câble]], le tirage du câble doit être plus long (12 mm pour un 34mm). Autre conséquence du plus grand avantage mécanique, les [[patins]] doivent être positionné plus proche de la [[jante]] au repos. S’ils sont trop éloignés, le levier risque de toucher le [[cintre]] avant d’atteindre la pleine puissance de freinage. Ce problème étant particulièrement grave pour les personnes ayant de petite mains, en réglant la garde trop près du cintre, le tirage de câble devenait insuffisant. Pour compenser cet handicap, l’articulation a été augmenté sur les leviers récents (42 mm). Ils offrent donc un tirage plus long (15 mm) avec un avantage mécanique encore plus diminué.
 +
* Les leviers à '''tirage court''' ont une articulation de 30 mm ou moins. Ils concernent tous les autres freins. Le tirage de câble est plus court (9 mm pour les leviers anciens de 25 mm) mais procurent un meilleur avantage mécanique. Pour augmenter cet avantage mécanique, les leviers récents ont un tirage encore plus court (6 mm pour une articulation de 18 mm sur les leviers de route pour [[Frein#Frein à double pivot|frein à double-pivot]] et (7 mm pour une articulation de 21 mm sur les leviers et [[Frein#Frein cantilever|freins cantilever]] récents). Là aussi les patins de freins récents doivent être placé plus près de la jante puisque le tirage du câble a été diminué. En conséquence avec un avantage mécanique deux fois plus faible sur les double-pivots et un tirage de câble deux fois plus court sur un levier de route comparé avec un levier à tirage long moderne pour frein à tirage direct, l’avantage mécanique global est similaire pour ces deux types de freins.
 +
==== Frein à tirage direct ====
 +
==== Cantilever à tirage central ====
 +
==== Frein à tirage central ====
 +
==== Frein hydraulique ====
 
=== Vis ===
 
=== Vis ===
  
 
[[Catégorie:Notes générales de mécanique]]
 
[[Catégorie:Notes générales de mécanique]]

Version actuelle datée du 22 juillet 2024 à 13:04

Palanca-ejemplo.jpg

Avantage mécanique

Par définition, l’avantage mécanique est le coefficient par lequel un mécanisme multiplie la force ou le couple appliqué  :

Avantage mécanique = force obtenue / force appliquée

Il dépend des distances parcourues par les forces mises en jeu :

Avantage mécanique = distance sur laquelle la force est appliquée / distance sur laquelle la force obtenue s’applique

En vélo, l’avantage mécanique peut être utilisé de plusieurs manières :

  • Pour amplifier un mouvement, en amplitude ou en vitesse. En augmentant le rapport de transmission, on allonge la distance parcourue par le vélo pour un tour de pédalier.
Rapport de transmission = 1 / Avantage mécanique
  • Pour amplifier un effort. La puissance de freinage augmentera alors au dépens de la distance parcourue par les patins ou les plaquettes du frein.

Les deux utilisations sont contradictoires : l’amplification du mouvement se fait aux dépens de l’effort, et l’amplification de l’effort se fait aux détriment de l’amplitude du mouvement.

Levier

En mécanique, un levier est une pièce rigide et allongée, en liaison pivot dans le cas des freins, qui permet de transformer un mouvement. Il évolue suivant le rapport de la distance sur laquelle la force est appliquée (distance entre la main et le triangle) divisé par la distance sur laquelle la force obtenue s’applique (distance entre la flèche et le triangle).

Avantage mécanique = distance sur laquelle la force est appliquée / distance sur laquelle la force obtenue s’applique

Axe et roue

Pour les mouvements rotatifs, l’équivalent de l’effet de levier est la relation axe et roue, ou tout assemblage formé de deux disques ou cylindres de diamètres différent et tournants sur le même axe. L’avantage mécanique idéal dépendra du rapport entre les rayons de ces deux pièces rondes.

 Avantage mécanique = rayon sur laquelle la force est appliquée / rayon sur laquelle la force obtenue s’applique.

Par extension, si l’une des pièces est un levier tournant sur le même axe (manivelle du pédalier, manche d’un outil), l’avantage mécanique dépendra du rapport entre le rayon de la roue et la longueur du levier.

 Avantage mécanique = rayon de la pièce sur laquelle la force est appliquée / longueur du levier sur laquelle la force obtenue s’applique.

Dans la réalité, l’avantage mécanique réel sera diminué à cause de l’énergie dissipée à cause des frottements ou de l’élasticité.

Presse hydraulique

Applications

Rapport de transmission

Le rapport de transmission est l’inverse de l’avantage mécanique. On s’intéresse ici à augmenter la distance parcourue par le vélo plutôt qu'à économiser nos forces. Le rapport de transmission est à distinguer du braquet et du développement :

  • Le braquet est la partie du rapport de transmission qu’on peut faire varier lors du pédalage en utilisant un dérailleur.
Braquet = nombre de dents du plateau / nombre de dents du pignon
  • Le développement est la distance parcourue par le vélo lors d’un tour de pédalier. Il dépend du braquet mais aussi de la circonférence effective de la roue, avec le pneu gonflé.
Développement = braquet × circonférence effective de la roue

Le rapport de transmission intègre une dernière variable, la longueur de manivelle.

Rapport de transmission = braquet × (rayon effectif la roue / longueur de manivelle)

Le rapport des transmission est en fait le cumul géométrique des effets de deux relations axe et roue :

  • Relation entre la manivelle et le plateau.
Rapport du pédalier = rayon du plateau / longueur de manivelle
  • Relation entre la roue et le pignon.
Rapport de la roue = rayon de la roue / rayon du pignon

L’avantage mécanique étant l’inverse du rapport de transmission, on aura

Avantage mécanique = (longueur de manivelle / rayon effectif la roue) × (nombre de dents du pignon / nombre de dents du plateau)

Frein

Le mâchoires des freins sur jante à câble agissent comme des leviers :

  • Sur les étriers de frein, le pivot se situe plus ou moins au milieu de chaque mâchoire. La partie au-dessus du pivot, rattachée au câble, est la partie qui actionne le levier (entre le triangle et la main sur le dessin). Elle est en général de longueur similaire sur tous les modèles de frein de même type. La partie en-dessous du pivot, où est fixé le patin, est la partie qui effectue le freinage (entre le triangle et la flèche sur le dessin). Elle peut être plus ou moins longue sur les freins à tirage latéral à simple pivot. Plus cette partie est longue, moins il y a aura d’avantage mécanique, et plus le freinage sera mou. L’avantage mécanique est assez variable, autour de 1 pour les étriers anciens et proche de 2 pour les étriers à double-pivot.
  • Sur les freins à tasseaux, le pivot se situe à l’une des extrémités de chaque mâchoire. Ce sont donc des cantilevers, qu’ils soient à tirage central ou à tirage direct. La partie agissante occupe toute la mâchoire (entre le triangle et la main sur le dessin) alors que la partie effective se situe entre le tasseau et le patin (entre le triangle et la flèche sur le dessin). Le rapport entre ces deux parties varie peu d’un modèle à l’autre. L’avantage mécanique est proche de 4 sur les freins à tirage direct et autour de 2 sur les autres cantilevers, la principale variable d’ajustement étant la position du patin sur les mâchoires.

Levier de frein à câble

Les leviers de frein offrent un premier avantage mécanique :

  • La partie agissante (entre le triangle et la main sur le dessin) est la partie visible du levier. Cet élément est difficilement mesurable, car l’action réelle dépendra des positions où sont posés les doigts de la main. Tout ce qu’on peut prédire est qu’un levier deux doigt offrira moins d’avantage mécanique qu’un levier trois ou quatre doigts.
  • La partie effective (entre le triangle et la flèche sur le dessin) est la partie cachée du levier. Elle forme un angle droit avec l’autre élément du levier. Elle se mesure de la tête de câble au pivot d’articulation du frein. Plus cette distance est importante, plus le tirage du câble sera long et plus l’avantage mécanique offert par le levier sera faible.

Traditionnellement on distingue les leviers en deux catégories en fonction de cette donnée :

  • Les leviers à tirage long ont une articulation de 34 mm ou plus. Ils sont requis pour les freins à tirage direct (et les freins à disque mécanique de VTT). En effet, leur avantage mécanique plus grand (proche de 4), implique en effet une plus grande amplitude au mouvement appliqué au levier de frein. Comme ce mouvement provient du câble, le tirage du câble doit être plus long (12 mm pour un 34mm). Autre conséquence du plus grand avantage mécanique, les patins doivent être positionné plus proche de la jante au repos. S’ils sont trop éloignés, le levier risque de toucher le cintre avant d’atteindre la pleine puissance de freinage. Ce problème étant particulièrement grave pour les personnes ayant de petite mains, en réglant la garde trop près du cintre, le tirage de câble devenait insuffisant. Pour compenser cet handicap, l’articulation a été augmenté sur les leviers récents (42 mm). Ils offrent donc un tirage plus long (15 mm) avec un avantage mécanique encore plus diminué.
  • Les leviers à tirage court ont une articulation de 30 mm ou moins. Ils concernent tous les autres freins. Le tirage de câble est plus court (9 mm pour les leviers anciens de 25 mm) mais procurent un meilleur avantage mécanique. Pour augmenter cet avantage mécanique, les leviers récents ont un tirage encore plus court (6 mm pour une articulation de 18 mm sur les leviers de route pour frein à double-pivot et (7 mm pour une articulation de 21 mm sur les leviers et freins cantilever récents). Là aussi les patins de freins récents doivent être placé plus près de la jante puisque le tirage du câble a été diminué. En conséquence avec un avantage mécanique deux fois plus faible sur les double-pivots et un tirage de câble deux fois plus court sur un levier de route comparé avec un levier à tirage long moderne pour frein à tirage direct, l’avantage mécanique global est similaire pour ces deux types de freins.

Frein à tirage direct

Cantilever à tirage central

Frein à tirage central

Frein hydraulique

Vis